Affichage des articles dont le libellé est cellules gliales. Afficher tous les articles
Affichage des articles dont le libellé est cellules gliales. Afficher tous les articles

23 octobre 2014

Étude stéréologique des populations gliales de l'amygdale chez les adolescents et les adultes avec des troubles du spectre autistique

Traduction: G.M.

PLoS One. 2014 Oct 17;9(10):e110356. doi: 10.1371/journal.pone.0110356. eCollection 2014.

Stereological Study of Amygdala Glial Populations in Adolescents and Adults with Autism Spectrum Disorder

Author information

  • Department of Psychiatry and Behavioral Sciences and the M. I. N. D. Institute, University of California Davis, Sacramento, California, United States of America.

Résumé

L'amygdale subit le développement aberrant dans les troubles du spectre autistique (TSA). Nous avons déjà constaté post-mortem qu'il y a une diminution chez l'adulte du nombre de neurones dans l'amydal de personnes avec TSA par rapport aux témoins au développement typique. La présente étude est un examen complet stéréologique de quatre populations de cellules non neuronales: microglie, oligodendrocytes, astrocytes et les cellules endothéliales, dans les mêmes cerveaux étudiés précédemment. Nous fournissons un protocole neuroanatomique détaillée pour définir chaque type qui peut être appliquée à d'autres études de l'amygdale dans les troubles neurodéveloppementaux et psychiatriques.
Nous évaluons ensuite si les nombre de cellules et les volumes moyens diffèrent entre les les cerveaux se développant typiquement ou avec TSA. Nous émettons l'hypothèse que la réduction du nombre de neurones dans les TSA pourrait se rapporter à la fonction immunitaire altérée et/ou l'activation d'une microglie aberrante, comme indiqué par l'augmentation du nombre des microglies et du volume du corps cellulaireGlobalement, le nombre moyen de cellules non-neuronales et les volumes globaux ne diffèrent pas entre les TSA et le cerveau au développement typique. Cependant, il y avait une évidente hétérogénéité au sein de la cohorte des TSA. Deux des huit cerveaux TSA montraient une forte activation de la microglie. Contrairement à notre hypothèse de départ, il y avait une tendance vers une corrélation positive entre le nombre de neurones et de microglie à al fois dans le groupe TSA et dans le groupe contrôle. Il y avait moins d'oligodendrocytes dans l'amygdale des individus adultes avec TSA de 20 ans et plus par rapport aux témoins au développement typique. Cette constatation peut donner un signe possible de connectivité altérée ou la communication neuronale altérée qui peut changer tout au long de la vie dans les TSA. 

Abstract

The amygdala undergoes aberrant development in autism spectrum disorder (ASD). We previously found that there are reduced neuron numbers in the adult postmortem amygdala from individuals with ASD compared to typically developing controls. The current study is a comprehensive stereological examination of four non-neuronal cell populations: microglia, oligodendrocytes, astrocytes, and endothelial cells, in the same brains studied previously. We provide a detailed neuroanatomical protocol for defining each cell type that may be applied to other studies of the amygdala in neurodevelopmental and psychiatric disorders. We then assess whether cell numbers and average volumes differ between ASD and typically developing brains. We hypothesized that a reduction in neuron numbers in ASD might relate to altered immune function and/or aberrant microglial activation, as indicated by increased microglial number and cell body volume. , average non-neuronal cell numbers and volumes did not differ between ASD and typically developing brains. However, there was evident heterogeneity within the ASD cohort. Two of the eight ASD brains displayed strong microglial activation. Contrary to our original hypothesis, there was a trend toward a positive correlation between neuronal and microglial numbers in both ASD and control cases. There were fewer oligodendrocytes in the amygdala of adult individuals with ASD ages 20 and older compared to typically developing controls. This finding may provide a possible sign of altered connectivity or impaired neuronal communication that may change across the lifespan in ASD.
PMID: 25330013

11 février 2011

New study presents surprising view of brain formation

Une nouvelle étude présente une vue surprenante de la formation du cerveau
Traduction G.M.

Une étude de l'Institut Scripps Research a dévoilé un mécanisme surprenant qui contrôle la formation du cerveau. Les résultats ont des implications pour la compréhension de nombreuses maladies, y compris certaines formes de retard mental, l’épilepsie, la schizophrénie et l'autisme.
La recherche, dirigée par professeur Ulrich Mueller de Scripps Research, a été publiée dans la revue Neuron le 10 Février 2011.

Dans cette nouvelle étude, Mueller et ses collègues s’intéressent à sur une protéine appelée reelin. Ils ont trouvé reelin est un acteur clé dans la migration des cellules nerveuses au néocortex, la partie du cerveau responsable des fonctions d'ordre supérieur, tels que la langue et de mouvement.
De manière inattendue, les scientifiques ont également trouvé que la protéine reelin affecte le processus indépendant de migration des cellules gliales, qui servent souvent à orienter le mouvement des cellules nerveuses.


Une migration critique

Comme le cerveau humain se développe, les cellules nerveuses nouvellement formés voyagent de leur lieu d'origine vers différentes régions du cerveau. Une fois qu'elles atteignent la destination appropriée, les cellules nerveuses communiquent entre elles pour former des circuits complexes et des réseaux, responsables de diverses fonctions du cerveau. Tout ce qui perturbe le cours de cette migration de cellules nerveuses a pour résultat un cerveau mal configuré et les conséquences sont généralement catastrophiques.
Il y a plus de 50 ans, les chercheurs ont découvert un type de souris mutante avec un néocortex et le cervelet complètement désorganisées, affectant la capacité de l'animal à marcher normalement. Plus tard, les chercheurs ont découvert que cette souris, appelé «reeler» en raison de sa démarche titubante, a été affecté par une mutation dans un gène particulier, surnommé reelin, qui code pour une protéine produite par les cellules nerveuses.
L'homologue humain du gène est muté chez les enfants avec lissencéphalie , littéralement "cerveau lisse",un état qui se traduit par un cerveau qui n'a pas ses plis caractéristiques. Les mutations de la protéine reelin ont également été identifiées chez les enfants avec un cerveau anormalement petit, ou une microcéphalie.
Bien que ces observations indiquent que reelin doit jouer un rôle clé dans la formation du cerveau proprement dit, jusqu'à présent on ne savait pas exactement ce qu’était ce rôle.

Les fonctions probables de Reelin
Depuis l'identification du gène reelin en 1995, les chercheurs ont découvert que la protéine correspondante est libérée par certaines cellules nerveuses et se lie aux récepteurs sur d’autres cellules nerveuses. Cette fixation déclenche alors une cascade de réactions chimiques, ou une voie de signalisation, dans la cellule nerveuse. Ces voies de signalisation peuvent éventuellement produire un changement de cellule cible, ils sont un des moyens par lesquels les cellules répondent à des stimuli de leur environnement.
«Nous savions que reelin se lie à plusieurs récepteurs sur les cellules nerveuses et déclenche différentes voies de signalisation, mais une question nous avons voulu nous poser est : « Est-ce que ces voies régulent la migration ? ", a déclaré Mueller. «Et si elles le font, comment?"
Pour commencer à répondre à ces questions, le groupe combiné plusieurs technologies qui sont devenues disponibles ces dernières années. Les scientifiques ont marqué les cellules nerveuses dans le cerveau d'embryons de souris avec des colorants fluorescents et puis, en utilisant des microscopes spéciaux, observé le déplacement des cellules en temps réel dans le néocortex du cerveau.
De cette façon, l'équipe de Mueller a comparé le mouvement des cellules nerveuses chez les souris normales, avec une voie reelin intact, et les souris mutantes, dans laquelle la reelin a bloqué des voies de signalisation. Les scientifiques ont été surpris par ce qu'ils ont vu.

Sur la piste des cellules
Les chercheurs savaient depuis longtemps que les cellules nerveuses nouvellement formées rampent le long d'un type particulier de cellules dans le cerveau, appelée cellule gliale, qui agit comme un guide cellulaire pour les cellules nerveuses. Mais ces dernières années, des études ont révélé que certaines cellules nerveuses peuvent trouver leur destination indépendamment des cellules gliales. Ces cellules nerveuses développent un bras qui s’étire pour trouver le chemin correct, puis le corps de la cellule suit la voie.
Les chercheurs avait supposé que la formation du néocortex était lié à la première stratégie: la migration des cellules gliales orientées. Mais grâce à leurs études d'imagerie, Mueller et ses collègues ont constaté que le contraire était vrai. Ils ont découvert que lorsque la voie reelin est inactivée dans les cellules nerveuses, ces cellules ne migrent plus au bon endroit dans le néocortex, comme ils le font chez les souris normales. Ces cellules nerveuses se déplacent ; elles ne suivent pas les cellules guides, les cellules gliales, mais plutôt en se fondant sur leurs propres moyens.

"Reelin n'affecte pas la migration des cellules gliales guide, mais une mutation reelin perturbe la mise en place de l'architecture du cerveau», a déclaré Mueller.
Cette constatation implique que la migration indépendante des cellules gliales est beaucoup plus importante dans la formation du néocortex que les scientifiques n’avaient prévu et que reelin contrôle en quelque sorte ce processus.

Trouver des gènes de maladies
Bien que le mécanisme par lequel reelin influe sur la migration n'est pas totalement compris, le groupe Mueller a identifié quelques-unes des molécules que reelin "utilise" afin de produire son effet.
Une autre classe bien connue de molécules qui jouent un rôle dans la formation du cerveau est composé de cadhérines - ces protéines fournissent une « colle » moléculaire qui permet aux cellules de se coller les unes aux autres pendant qu’elles se déplacent. Mueller et ses collègues ont montré que reelin contrôle la fonction des cadhérines dans les cellules nerveuses.
Les prochaines études devraient identifier les autres facteurs . Et, comme ces nouvelles molécules sont découvertes, Mueller prévoit de collaborer avec des généticiens afin de chercher des mutations dans les gènes correspondants.

"Nous pourrions trouver d'autres gènes impliqués dans la schizophrénie et l'autisme», dit-il. «Nous savons déjà que certaines cadhérines sont impliqués dans le trouble du spectre autistique».